Fields And Wave Electromagnetics 2nd Edition

Thank you for reading Fields And Wave Electromagnetics 2nd Edition . As you may know, people have look numerous times for their chosen novels like this Fields And Wave Electromagnetics 2nd Edition , but end up in infectious downloads.

Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some infectious virus inside their desktop computer.

Fields And Wave Electromagnetics 2nd Edition is available in our digital library an online access to it is set as public so you can download it instantly. Our book servers hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the Fields And Wave Electromagnetics 2nd Edition is universally compatible with any devices to read

Engineering Electromagnetics - Nathan Ida 2015-03-20

This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps - a short, introductory chapter followed by a second chapter with indepth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book Includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapter

Engineering Electromagnetic Fields and Waves - Carl T. A. Johnk 1988-01-18

Presents the introductory theory and applications of Maxwell's equations to electromagnetic field problems. Unlike other texts, Maxwell's equations and the associated vector mathematics are developed early in the work, allowing readers to apply them at the outset. Its unified treatment of coordinate systems saves time in developing the rules for vector manipulations in ways other than the rectangular coordinate system. The following chapters cover static and guasi-static electric and magnetic fields, wave reflection and transmission at plane boundaries, the Poynting power theorem, rectangular waveguide mode theory, transmission lines, and an introduction to the properties of linear antennas and aperture antennas. Includes an expanded set of problems, many of which extend the material developed in the chapters.

Fields and Waves in Communication Electronics - Simon Ramo 1994-02-09

This comprehensive revision begins with a review of static electric and magnetic fields, providing a wealth of results useful for static and time-dependent fields problems in which the size of the device is small compared with a wavelength. Some of the static results such as inductance of transmission lines calculations can be used for microwave frequencies. Familiarity with vector operations, including divergence and curl, are developed in context in the chapters on statics. Packed with useful derivations and applications.

Field Theory of Guided Waves - Robert E. Collin 1990-12-15

"Co-published with Oxford University Press Long considered the most comprehensive account of electromagnetic theory and analytical methods for solving waveguide and cavity problems, this new Second Edition has been completely revised and thoroughly updated -- approximately 40% new material!Packed with examples and applications FIELD THEORY OF GUIDED WAVES provides solutions to a large number of practical structures of current interest. The book includes an exceptionally complete discussion of scalar and Dyadic Green functions. Both a valuable review and source of basic information on applied

mathematical topics and a hands-on source for solution methods and techniques, this book belongs on the desk of all engineers working in microwave and antenna systems!" Sponsored by: IEEE Antennas and **Propagation Society**

Electromagnetic Waves in Stratified Media - James R. Wait 2013-10-22 International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagnetic waves from planar stratified media. Other chapters consider the oblique reflection of plane electromagnetic waves from a continuously stratified medium. This book discusses as well the fundamental theory of wave propagation around a sphere. The final chapter deals with the theory of propagation in a spherically stratified medium. This book is a valuable resource for electrical engineers, scientists, and research workers. Electromagnetics and Antenna Technology - Alan J. Fenn 2017-12-31 Written by a leading expert in the field, this practical new resource presents the fundamentals of electromagnetics and antenna technology. This book covers the design, electromagnetic simulation, fabrication, and measurements for various types of antennas, including impedance matching techniques and beamforming for ultrawideband dipoles, monopoles, loops, vector sensors for direction finding, HF curtain arrays, 3D printed nonplanar patch antenna arrays, waveguides for portable radar, reflector antennas, and other antennas. It explores the essentials of phased array antennas and includes detailed derivations of important field equations, and a detailed formulation of the method of moments. This resource exhibits essential derivations of equations, providing readers with a strong foundation of the underpinnings of electromagnetics and antennas. It includes a complete chapter on the details of antenna and electromagnetic test and measurement. This book explores details on 3D printed non-planar circular patch array antenna technology and the design and analysis of a planar array-fed axisymmetric gregorian reflector. The lumped-element impedance matched antennas are examined and include a look at an analytic impedance matching solution with a parallel LC network. This book provides key insight into many aspects of antenna technology that have broad applications in radar and communications. Time-Harmonic Electromagnetic Fields - Roger F. Harrington 2001-09-13 Time-Harmonic Electromagnetic Fields A Classic Reissue in the IEEE Press Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor "When I begin a new research project, I clear my desk and put away all texts and reference books. Invariably, Harrington's book is the first book to find its way back to my desk. My copy is so worn that it is falling apart."--Dr. Kendall F. Casey, SRI "In the opinion of our faculty, there is no other book available that serves as well as Professor Harrington's does as an introduction to advanced electromagnetic theory and to classic solution methods in electromagnetics."--Professor Chalmers M. Butler, Clemson University First published in 1961, Roger Harrington's Time-Harmonic Electromagnetic Fields is one of the most significant works in electromagnetic theory and

applications. Over the past forty years, it proved to be a key resource for students, professors, researchers, and engineers who require a comprehensive, in-depth treatment of the subject. Now, IEEE is reissuing the classic in response to requests from our many members, who found it an invaluable textbook and an enduring reference for practicing engineers. About the IEEE Press Series on Electromagnetic Wave Theory The IEEE Press Series on Electromagnetic Wave Theory offers outstanding coverage of the field. It consists of new titles of contemporary interest as well as reissues and revisions of recognized classics by established authors and researchers. The series emphasizes works of long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, researchers, and practicing engineers, the series provides affordable volumes that explore and explain electromagnetic waves beyond the undergraduate level.

Electromagnetism - Tamer Becherrawy 2013-05-21

This book deals with electromagnetic theory and its applications at the level of a senior-level undergraduate course for science and engineering. The basic concepts and mathematical analysis are clearly developed and the important applications are analyzed. Each chapter contains numerous problems ranging in difficulty from simple applications to challenging. The answers for the problems are given at the end of the book. Some chapters which open doors to more advanced topics, such as wave theory, special relativity, emission of radiation by charges and antennas, are included. The material of this book allows flexibility in the choice of the topics covered. Knowledge of basic calculus (vectors, differential equations and integration) and general physics is assumed. The required mathematical techniques are gradually introduced. After a detailed revision of time-independent phenomena in electrostatics and magnetism in vacuum, the electric and magnetic properties of matter are discussed. Induction, Maxwell equations and electromagnetic waves, their reflection, refraction, interference and diffraction are also studied in some detail. Four additional topics are introduced: guided waves, relativistic electrodynamics, particles in an electromagnetic field and emission of radiation. A useful appendix on mathematics, units and physical constants is included. Contents 1. Prologue. 2. Electrostatics in Vacuum. 3. Conductors and Currents. 4. Dielectrics. 5. Special Techniques and Approximation Methods. 6. Magnetic Field in Vacuum. 7. Magnetism in Matter. 8. Induction. 9. Maxwell's Equations. 10. Electromagnetic Waves. 11. Reflection, Interference, Diffraction and Diffusion. 12. Guided Waves. 13. Special Relativity and Electrodynamics. 14. Motion of Charged Particles in an Electromagnetic Field. 15. Emission of Radiation.

Human Exposure to Electromagnetic Fields - Patrick Staebler 2017-05-12

Everyone, whether they like it or not, is exposed to electromagnetic fields, most of the time, at very low levels. In this case, they are inconsequential, but they can cause adverse health effects when they become intense enough. This topic is complex and sensitive. Covering frequencies from 0 Hz to 300 GHz, Human Exposure to Electromagnetic Fields provides an overview of this vast topic. After a reminder of the concepts of electromagnetic fields, the author presents some examples of sources of radiation in daily life and in the industrial or medical sectors. The biophysical and biological effects of these fields on the human body are detailed and the exposure limits are recalled. The exposure assessment and the implementation of the appropriate regulation within companies are also covered. Technically and practically, this book is aimed at people with a scientific background, risk prevention actors, health physicians, especially occupational doctors, and equipment designers.

Electromagnetic Field Theory - Markus Zahn 2003-01-01

An Introduction to Applied Electromagnetics and Optics - Vladimir V. Mitin 2016-11-18 Modern technology is rapidly developing and for this reason future engineers need to acquire advanced knowledge in science and technology, including electromagnetic phenomena. This book is a contemporary text of a one-semester course for junior electrical engineering students. It covers a broad spectrum of electromagnetic phenomena such as, surface waves, plasmas, photonic crystals, negative refraction as well as related materials including superconductors. In addition, the text brings together electromagnetism and optics as the majority of texts discuss electromagnetism disconnected from optics. In contrast, in this book both are discussed. Seven labs have been developed to accompany the material of the book. Fundamentals of Electromagnetics with MATLAB - Karl Erik Lonngren 2007

This second edition comes from your suggestions for a more lively format, self-learning aids for students, and the need for applications and projects without being distracted from EM Principles. Flexibility Choose the order, depth, and method of reinforcing EM Principles—the PDF files on CD provide Optional Topics, Applications, and Projects. Affordability Not only is this text priced below competing texts, but also the topics on CD (and downloadable to registered users) provide material sufficient for a second term of study with no additional book for students to buy.MATLAB This book takes full advantage of MATLAB's power to motivate and reinforce EM Principles. No other EM books is better integrated with MATLAB. The second edition is even richer and easier to incorporate into course use with the new, self-paced MATLAB tutorials on the CD and available to registered users.

Wireless and Guided Wave Electromagnetics - Le Nguyen Binh 2017-07-12 Wireless communications allow high-speed mobile access to a global Internet based on ultra-wideband backbone intercontinental and terrestrial networks. Both of these environments support the carrying of information via electromagnetic waves that are wireless (in free air) or guided through optical fibers. Wireless and Guided Wave Electromagnetics: Fundamentals and Applications explores the fundamental aspects of electromagnetic waves in wireless media and wired guided media. This is an essential subject for engineers and physicists working with communication technologies, mobile networks, and optical communications. This comprehensive book: Builds from the basics to modern topics in electromagnetics for wireless and optical fiber communication Examines wireless radiation and the guiding of optical waves, which are crucial for carrying high-speed information in long-reach optical networking scenarios Explains the physical phenomena and practical aspects of guiding optical waves that may not require detailed electromagnetic solutions Explores applications of electromagnetic waves in optical communication systems and networks based on frequency domain transfer functions in the linear regions, which simplifies the physical complexity of the waves but still allows them to be examined from a system engineering perspective Uses MATLAB® and Simulink® models to simulate and illustrate the electromagnetic fields Includes worked examples, laboratory exercises, and problem sets to test understanding The book's modular structure makes it suitable for a variety of courses, for self-study, or as a resource for research and development. Throughout, the author emphasizes issues commonly faced by engineers. Going a step beyond traditional electromagnetics textbooks, this book highlights specific uses of electromagnetic waves with a focus on the wireless and optical technologies that are increasingly important for high-speed transmission over very long distances.

Engineering Electromagnetic Fields and Waves - Carl Theodore Adolf Johnk 1975

Introduction to Electromagnetism - Martin J N Sibley 2021-03-24 This edition aims to expand on the first edition and take the reader through to the wave equation on coaxial cable and free-space by using Maxwell's equations. The new chapters include time varying signals and fundamentals of Maxwell's equations. This book will introduce and discuss electromagnetic fields in an accessible manner. The author explains electroconductive fields and develops ideas relating to signal propagation and develops Maxwell's equations and applies them to propagation in a planar optical waveguide. The first of the new chapters introduces the idea of a travelling wave by considering the variation of voltage along a coaxial line. This concept will be used in the second new chapter which solves Maxwell's equations in free-space and then applies them to a planar optical waveguide in the third new chapter. As this is an area that most students find difficult, it links back to the earlier chapters to aid understanding. This book is intended for first- and second-year electrical and electronic undergraduates and can also be used for undergraduates in mechanical engineering, computing and physics. The book includes examples and homework problems. Introduces and examines electrostatic fields in an accessible manner Explains electroconductive fields Develops ideas relating to signal propagation Examines Maxwell's equations and relates them to propagation in a planar optical waveguide Martin Sibley recently retired after 33 years of teaching at the University of Huddersfield. He has a PhD from Huddersfield Polytechnic in Preamplifier Design for Optical Receivers. He started his career in academia in 1986 having spent 3 years as a postgraduate student and then 2 years as a British Telecom-funded research fellow. His research work had a strong bias to the practical implementation of research, and he taught electromagnetism and

communications at all levels since 1986. Dr. Sibley finished his academic career as a Reader in Communications, School of Computing and Engineering, University of Huddersfield. He has authored five books and published over 80 research papers. Electromagnetics - Laud B B 1987

Fundamentals of Engineering Electromagnetics - David Keun Cheng 1993

"Fundamental of Engineering Electromagnetics" not only presents the fundamentals of electromagnetism in a concise and logical manner, but also includes a variety of interesting and important applications. While adapted from his popular and more extensive work, "Field and Wave Electromagnetics," this text incorporates a number of innovative pedagogical features. Each chapter begins with an overview, which serves to offer qualitative quidance to the subject matter and motivate the student. Review questions and worked examples throughout each chapter reinforce the student's understanding of the material. Remarks boxes following the review questions and margin notes throughout the book serve as additional pedagogical aids. Back Cover Fundamentals of Engineering Electromagnetics is a shorter version of Dr. Cheng's bestselling Field and Wave Electromagnetics, Second Edition. Fundamentals has been written in summaries. Emphasizes examples and exercises that invite students to build their knowledge of electromagnetics by solving problems. Besides presenting electromagnetics in a concise and logical manner, the text covers application topics such as electric motors, transmission lines, waveguides, antennas, antenna arrays, and radar systems.

Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering - Peter Russer 2003

If you're looking for a clear, comprehensive overview of basic electromagnetics principles and applications to antenna and microwave circuit design for communications, this authoritative book is your best choice. Including concise explanations of all required mathematical concepts needed to fully comprehend the material, the book is your complete resource for understanding electromagnetics in current, emerging and future broadband communication systems, as well as high-speed analogue and digital electronic circuits and systems.

Classical Electromagnetic Radiation - Mark A. Heald 2012-12-19

Newly corrected, this highly acclaimed text is suitable foradvanced physics courses. The authors present a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity tofully integrate electricity with magnetism. Corrected and emended reprint of the Brooks/Cole ThomsonLearning, 1994, third edition.

Advanced Engineering Electromagnetics - Constantine A. Balanis 2012-01-24

Balanis' second edition of Advanced Engineering Electromagnetics - a global best-seller for over 20 years covers the advanced knowledge engineers involved in electromagnetic need to know, particularly as the topic relates to the fast-moving, continually evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antenna, microwave and wireless communication) points to an increase in the number of engineers needed to specialize in this field. In addition, the Instructor Book Companion Site contains a rich collection of multimedia resources for use with this text. Resources include: Readymade lecture notes in Power Point format for all the chapters. Forty-nine MATLAB® programs to compute, plot and animate some of the wave phenomena Nearly 600 end-of-chapter problems, that's an average of 40 problems per chapter (200 new problems; 50% more than in the first edition) A thoroughly updated Solutions Manual 2500 slides for Instructors are included.

Electromagnetic Fields - Ahmad Shahid Khan 2020-10-11

The study of electromagnetic field theory is required for proper understanding of every device wherein electricity is used for operation. The proposed textbook on electromagnetic fields covers all the generic and unconventional topics including electrostatic boundary value problems involving two- and threedimensional Laplacian fields and one- and two- dimensional Poissonion fields, magnetostatic boundary value problems, eddy currents, and electromagnetic compatibility. The subject matter is supported by

Electromagnetic Wave Propagation, Radiation, and Scattering - Akira Ishimaru 2017-08-09 One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-ofchapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves-including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel's equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio-medical engineering in optics and ultrasound, and new materials and integration with signal processing. Electromagnetic Fields and Waves - Vladimir Rojansky 2012-03-08 This comprehensive introduction to classical electromagnetic theory covers the major aspects, including scalar fields, vectors, laws of Ohm, Joule, Coulomb, Faraday, Maxwell's equation, and more. With numerous diagrams and illustrations.

Electromagnetic Fields - J. Van Bladel 1985-06-01

Electromagnetic Waves - Carlo G. Someda 2017-12-19

Adapted from a successful and thoroughly field-tested Italian text, the first edition of Electromagnetic Waves was very well received. Its broad, integrated coverage of electromagnetic waves and their applications forms the cornerstone on which the author based this second edition. Working from Maxwell's equations to applications in optical communications and photonics, Electromagnetic Waves, Second Edition forges a link between basic physics and real-life problems in wave propagation and radiation. Accomplished researcher and educator Carlo G. Someda uses a modern approach to the subject. Unlike other books in the field, it surveys all major areas of electromagnetic waves in a single treatment. The book begins with a detailed treatment of the mathematics of Maxwell's equations. It follows with a discussion of polarization, delves into propagation in various media, devotes four chapters to guided propagation, links the concepts to practical applications, and concludes with radiation, diffraction, coherence, and radiation statistics. This edition features many new and reworked problems, updated references and suggestions for further reading, a completely revised appendix on Bessel functions, and new definitions such as antenna effective

height. Illustrating the concepts with examples in every chapter, Electromagnetic Waves, Second Edition is an ideal introduction for those new to the field as well as a convenient reference for seasoned professionals. Theory and Computation of Electromagnetic Fields - Jian-Ming Jin 2015-08-10

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell's equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Electromagnetic Fields and Waves - Magdy F. Iskander 2000-04-01

Field and Wave Electromagnetics - David Keun Cheng 1989

Field and wave electromagnetics (World Student S.)

Electromagnetic Theory for Microwaves and Optoelectronics - Keguian Zhang 2013-06-29

This book is a first-year graduate text on electromagnetic fields and waves. It is the translated and revised edition of the Chinese version with the same title published by the Publishing House of Electronic Industry (PHEI) of China in 1994. The text is based on the graduate course lectures on "Advanced Elec trodynamics" given by the authors at Tsinghua University. More than 300 students from the Department of Electronic Engineering and the Depart ment of Applied Physics have taken this course during the last decade. Their particular fields are microwave and millimeterwave theory and technology, physical electronics, optoelectronics and engineering physics. As the title of the book shows, the texts and examples in the book concentrate mainly on electromagnetic theory related to microwaves and optoelectronics, or light wave technology. However, the book can also be used as an intermediate-level text or reference book on electromagnetic fields and waves for students and scientists engaged in research in neighboring fields. Fundamentals of Electromagnetics 2 - David Voltmer 2007-01-01

This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundamentals of Electromagnetics Vol 1: Internal Behavior of Lumped Elements, with a focus on the DC and low-frequency behavior of electromagnetic fields within lumped elements, students will have gained the necessary knowledge to progress to advanced studies of electromagnetics.

Electromagnetic Field Theory Fundamentals - Bhag Singh Guru 2009-07-23

Guru and Hiziroglu have produced an accessible and user-friendly text on electromagnetics that will appeal to both students and professors teaching this course. This lively book includes many worked examples and problems in every chapter, as well as chapter summaries and background revision material where appropriate. The book introduces undergraduate students to the basic concepts of electrostatic and magnetostatic fields, before moving on to cover Maxwell's equations, propagation, transmission and

radiation. Chapters on the Finite Element and Finite Difference method, and a detailed appendix on the Smith chart are additional enhancements. MathCad code for many examples in the book and a comprehensive solutions set are available at www.cambridge.org/9780521830164. Electromagnetic Engineering and Waves - Aziz S. Inan 2014-08-20 "Engineering Electromagnetics and Waves" is designed for upper-division college and university engineering students, for those who wish to learn the subject through self-study, and for practicing engineers who need an up-to-date reference text. The student using this text is assumed to have completed typical lower-division courses in physics and mathematics as well as a first course on electrical engineering circuits." "This book provides engineering students with a solid grasp of electromagnetic fundamentals and electromagnetic waves by emphasizing physical understanding and practical applications. The topical organization of the text starts with an initial exposure to transmission lines and transients on high-speed distributed circuits, naturally bridging electrical circuits and electromagnetics. Teaching and Learning ExperienceThis program will provide a better teaching and learning experience-for you and your students. It provides: Modern Chapter OrganizationEmphasis on Physical UnderstandingDetailed Examples, Selected Application Examples, and Abundant IllustrationsNumerous End-of-chapter Problems, Emphasizing Selected Practical ApplicationsHistorical Notes on the Great Scientific PioneersEmphasis on Clarity without Sacrificing Rigor and CompletenessHundreds of Footnotes Providing Physical Insight, Leads for Further Reading, and Discussion of Subtle and Interesting Concepts and Applications" The Plane Wave Spectrum Representation of Electromagnetic Fields - P. C. Clemmow 1996 Electrical Engineering/Electromagnetics The Plane Wave Spectrum Representation of Electromagnetic Fields A classic reissue in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor"I am pleased to see that the IEEE Press and OUP have secured the rights to republish this excellent monograph ... a long-cherished exposition on the angular spectrum concept."--James R. WaitThe purpose of this book is to explain how general electromagnetic fields can be represented by the superposition of plane waves traveling in diverse directions, and to illustrate the way in which this plane wave spectrum representation can be put to good use in treating various characteristic problems belonging to the classical theories of radiation, diffraction and propagation. The book offers a largely unified theory of a range of problems, solutions to all of which are obtained in forms at least patently capable of yielding numerical results by straightforward means. The reader is assumed to be competent at integration in the complex plane, but otherwise the discussion is virtually self-contained. The aim is to furnish the student of electromagnetic theory with a useful technical tool and a comparatively compact account of some interesting aspects of his discipline. The contents are presented in two parts. The first, under the heading of Theory, covers Preliminaries, Plane wave representations; and Supplementary theory. The second, with the heading Application, deals with Diffraction by a plane screen; Propagation over a uniform plane surface; Propagation over a two-part plane surface; The field of a moving point charge; and Sources of anisotropic media. Also in the series ... Field Computation by Moment Method An IEEE/OUP classic reissue R.F. Harrington, Syracuse University 1995, Hardcover, 240 pp. Waves and Fields in Inhomogeneous Media An IEEE/OUP classic reissue Weng Cho Chew, University of Illinois at Urbana-Champaign 1995, Hardcover, 632 pp. Methods in Electromagnetic Wave Propagation Second Edition D.S. Jones, University of Dundee 1994, Hardcover, 686 pp. About the seriesFormerly the IEEE Press Series on Electromagnetic Waves, this new joint series between IEEE Press and Oxford University Press offers even better coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level Electromagnetics and Calculation of Fields - Nathan Ida 2013-03-07 This introduction to electromagnetic fields emphasizes the computation of fields and the development of theoretical relations. It presents the electromagnetic field and Maxwell's equations with a view toward connecting the disparate applications to the underlying relations, along with computational methods of solving the equations.

Fundamentals of Engineering Electromagnetics - David K. Cheng 2014-03-20

Fundamental of Engineering Electromagnetics not only presents the fundamentals of electromagnetism in a concise and logical manner, but also includes a variety of interesting and important applications. While adapted from his popular and more extensive work, Field and Wave Electromagnetics, this text incorporates a number of innovative pedagogical features. Each chapter begins with an overview which serves to offer qualitative guidance to the subject matter and motivate the student. Review questions and worked examples throughout each chapter reinforce the student's understanding of the material. Remarks boxes following the review questions and margin notes throughout the book serve as additional pedagogical aids.

Theory of Electromagnetic Wave Propagation - Charles Herach Papas 2014-05-05 Clear, coherent work for graduate-level study discusses the Maxwell field equations, radiation from wire antennas, wave aspects of radio-astronomical antenna theory, the Doppler effect, and more. **Electromagnetic Fields and Waves: Fundamentals of Engineering** - Sedki M. Riad 2019-12-27 Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Understand electromagnetic field principles, engineering techniques, and applications This core introductory-level undergraduate textbook offers a solid coverage of the fundamentals of electromagnetic fields and waves. Written by two electrical engineering experts and experienced educators, the book is designed to accommodate both one and two semester curricula. Electromagnetic Fields and Waves: Fundamentals of Engineering presents detailed explanations of the topic of EM fields in a holistic fashion that integrates the math and the physics of the material with students' realistic preparation in mind. You will learn about static and time-varying fields, wave propagation and polarization, transmission lines and waveguides, and more. Coverage includes: • An introduction to electromagnetic fields and waves • Transmission lines and wave equations • Transition to electrostatics • Electrostatic fields, electric flux, and Gauss' law • Electric force, field, energy, and potential • Materials: conductors and dielectrics • Poisson's and Laplace's equations • Uniqueness theorem and graphical and numerical solutions • Magnetic fields and flux • Magnetic materials, magnetic circuits, and inductance • Time-varying fields and Faraday's law • Wave propagation: plane waves • Wave polarization and propagation in multiple layers • Waveguides and cavity resonators • Historical review of EM scientists

University Physics - Samuel J. Ling 2016-09-29

"University Physics is a three-volume collection that meets the scope and sequence requirements for twoand three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result."--Open Textbook Library. *Electromagnetics* - Steven Ellingson 2019-12-13

Electromagnetic Fields and Waves - Paul Lorrain 1972